
CERC 2019
Presentation of solutions

December 3, 2019

ABB [ABBA]

I Task: Find the minimum number of letters to be appended to
make the string palindromic.

I Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

I We can iterate over all suffixes and check whether it is
palindromic.

I The check could be done by multiple string matching
algorithms.

I Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, . . .

I Complexity depends on chosen algorithm: O(N) is achievable.

ABB [ABBA]

I Task: Find the minimum number of letters to be appended to
make the string palindromic.

I Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

I We can iterate over all suffixes and check whether it is
palindromic.

I The check could be done by multiple string matching
algorithms.

I Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, . . .

I Complexity depends on chosen algorithm: O(N) is achievable.

ABB [ABBA]

I Task: Find the minimum number of letters to be appended to
make the string palindromic.

I Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

I We can iterate over all suffixes and check whether it is
palindromic.

I The check could be done by multiple string matching
algorithms.

I Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, . . .

I Complexity depends on chosen algorithm: O(N) is achievable.

ABB [ABBA]

I Task: Find the minimum number of letters to be appended to
make the string palindromic.

I Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

I We can iterate over all suffixes and check whether it is
palindromic.

I The check could be done by multiple string matching
algorithms.

I Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, . . .

I Complexity depends on chosen algorithm: O(N) is achievable.

ABB [ABBA]

I Task: Find the minimum number of letters to be appended to
make the string palindromic.

I Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

I We can iterate over all suffixes and check whether it is
palindromic.

I The check could be done by multiple string matching
algorithms.

I Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, . . .

I Complexity depends on chosen algorithm: O(N) is achievable.

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

Zeldain Garden [Linkin Park]

I Task: Find the sum of divisor functions on a range.

I Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

I Let Q be equal to bNc
I All numbers ”lesser” than sqrt:

∑Q
i=1b

N
i c

I All numbers ”greater” than sqrt:
∑Q

i=1b
N
i c

I Almost there, where is the mistake?

I We included all pairs lesser/equal to Q twice.

I (2 ·
∑Q

i=1b
N
i c)-Q2

I Complexity is O(
√
N)

The Bugs [The Beatles]

I Task: Find the number of normalised 123 patterns in
sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).

I BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321

I BUT: There are nonly 5 patterns which are not isomorphic
after reverse and ∞-value: 111,112,121,123,132

I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321

I BUT: There are nonly 5 patterns which are not isomorphic
after reverse and ∞-value: 111,112,121,123,132

I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132

I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.

I 123: Fix the 2 and check prefix minimum and suffix
maximum.

I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.

I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.

I 121: Check maximum between first and last occurence of
each value.

I 132: Fix the 3 and do combination of prefix minimum and
biggest lesser value in suffix.

I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.

I 132: Fix the 3 and do combination of prefix minimum and
biggest lesser value in suffix.

I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.

I Complexity is O(N logN)

The Bugs [The Beatles]
I Task: Find the number of normalised 123 patterns in

sequence.

I There are 27 patterns which are not normalised (33).
I BUT: There are only 13 of patterns after normalisation:

111,112,121,122,123,132,211,212,213,221,231,312,321
I BUT: There are nonly 5 patterns which are not isomorphic

after reverse and ∞-value: 111,112,121,123,132
I 111: Simple frequence array.
I 123: Fix the 2 and check prefix minimum and suffix

maximum.
I 112: Combination of frequence array and suffix maximum.
I 121: Check maximum between first and last occurence of

each value.
I 132: Fix the 3 and do combination of prefix minimum and

biggest lesser value in suffix.
I Complexity is O(N logN)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.

I There are multiple methods to find the blocks – for example:
I Combination of previously stated Data Structure and Binary

search.
I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Be Geeks [Bee Gees]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

K==S [Kiss]

I Task: Find the number of strings of length N which do not
contain any of given strings as a substring.

K==S [Kiss]

I Task: Find the number of strings of length N which do not
contain any of given strings as a substring.

K==S [Kiss]

I Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N − ANS .

I We have to find out the way to build all such strings.

I This can be done by constructing the Aho-Corasick
automaton.

I It wasn’t needed to construct this automaton efficiently as
there are at most Q = 100 characters involved (there will be
≈ Q states in the automaton).

K==S [Kiss]

I Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N − ANS .

I We have to find out the way to build all such strings.

I This can be done by constructing the Aho-Corasick
automaton.

I It wasn’t needed to construct this automaton efficiently as
there are at most Q = 100 characters involved (there will be
≈ Q states in the automaton).

K==S [Kiss]

I Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N − ANS .

I We have to find out the way to build all such strings.

I This can be done by constructing the Aho-Corasick
automaton.

I It wasn’t needed to construct this automaton efficiently as
there are at most Q = 100 characters involved (there will be
≈ Q states in the automaton).

K==S [Kiss]

I Then we figure out approach to solve the problem, though for
much lower limit of N.

I We will use Dynamic Programming where the state
configuration is combination of length of the string and the
state of the automation that we’re currently in.

I Time complexity of this approach is O(N · Q).

I Too slow to fit the constraints of the problem · · · .

K==S [Kiss]

I Finally we need to optimize DP approach to fit in the time
limit.

I We will do so by using Matrix Exponentiation.

I Similarly to the DP approach we will create the transition
matrix and use its N-th power to compute the answer.

I Time complexity of this approach is O(L3 logN).

Ponk Warshall [Pink Floyd]

I Task: Compose a reordering of a string on four letters from
fewest possible swaps.

I Reformulation:
I Directed graph on 4 vertices, edges with multiplicities.

A C

GT

nac

nca

I Decompose the graph into maximum possible number of
cycles.

I Greedily start with 2-cycles, then 3-cycles and cover the rest
with 4-cycles.

I Complexity is O(N).

Ponk Warshall [Pink Floyd]

I Task: Compose a reordering of a string on four letters from
fewest possible swaps.

I Reformulation:
I Directed graph on 4 vertices, edges with multiplicities.

A C

GT

nac

nca

I Decompose the graph into maximum possible number of
cycles.

I Greedily start with 2-cycles, then 3-cycles and cover the rest
with 4-cycles.

I Complexity is O(N).

Ponk Warshall [Pink Floyd]

I Task: Compose a reordering of a string on four letters from
fewest possible swaps.

I Reformulation:
I Directed graph on 4 vertices, edges with multiplicities.

A C

GT

nac

nca

I Decompose the graph into maximum possible number of
cycles.

I Greedily start with 2-cycles, then 3-cycles and cover the rest
with 4-cycles.

I Complexity is O(N).

Ponk Warshall [Pink Floyd]

I Task: Compose a reordering of a string on four letters from
fewest possible swaps.

I Reformulation:
I Directed graph on 4 vertices, edges with multiplicities.

A C

GT

nac

nca

I Decompose the graph into maximum possible number of
cycles.

I Greedily start with 2-cycles, then 3-cycles and cover the rest
with 4-cycles.

I Complexity is O(N).

Ponk Warshall 2-cycles

I Assume the 2-cycle is covered differently.

A C

GT

A C

GT

I Then we can change the covering without decreasing the
number of cycles.

Ponk Warshall 3-cycles

I After covering 2-cycles, only one case remains
A C

GT

nac

ncg

ngt

nta

nag

nct

(up to isomorphism)

I Only two directed 3-cycles (with one shared edge).
A C

GT

Light Emitting Hindenburg [Led Zeppelin]

I Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

I Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

I This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

I In case of YES: We reduce the set of numbers to those with
this bit on and OR 2i with the answer.

I In case of NO: We simply go to another bit.

I Complexity is O(N logMAX)

Light Emitting Hindenburg [Led Zeppelin]

I Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

I Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

I This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

I In case of YES: We reduce the set of numbers to those with
this bit on and OR 2i with the answer.

I In case of NO: We simply go to another bit.

I Complexity is O(N logMAX)

Light Emitting Hindenburg [Led Zeppelin]

I Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

I Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

I This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

I In case of YES: We reduce the set of numbers to those with
this bit on and OR 2i with the answer.

I In case of NO: We simply go to another bit.

I Complexity is O(N logMAX)

Light Emitting Hindenburg [Led Zeppelin]

I Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

I Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

I This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

I In case of YES: We reduce the set of numbers to those with
this bit on and OR 2i with the answer.

I In case of NO: We simply go to another bit.

I Complexity is O(N logMAX)

Light Emitting Hindenburg [Led Zeppelin]

I Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

I Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

I This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

I In case of YES: We reduce the set of numbers to those with
this bit on and OR 2i with the answer.

I In case of NO: We simply go to another bit.

I Complexity is O(N logMAX)

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Crimson Sexy Jalapeños [Red Hot Chilli Peppers]

I Task: Win a game of chockolate-eating against ”AI”.

I Observation: We can divide the game into four ”independent”
games – as for each side – played at once.

I It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

I The winability of game can be decided by XORing the sizes of
state while.

I If the XOR is equal to 0 the state is lost.

I Similary we can decide the next move:

I We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

I NOTE: It can be proven that it is always possible to find such
move.

I Complexity is O(N) (as the game could consist of O(N)
moves.

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Bob in Wonderlands [Alice in Chains]

I Task: Minimal number of edge reconnections to make a tree
become a path.

I Lower bound: We have to get rid of all degrees larger than 2.

I Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

I Obviously we don’t have to simulate the procedure!

I Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

I Complexity is O(N)

Saba1000kg [Sabaton]

I Task: For each induced subgraph count the number of
components.

I Observation (for N = M = Q = 105): The total number of
edges among all subgraphs is at most O(N

√
N)

I Proof: Worst case if clique in each query. Note that we can’t
make clique with more than O(N) edges (by taking M as√
N). There are at most

√
N such queries.

I To build the graph we have to consider two cases:

1. For each query of size M greater than
√
N, go through all

edges and check, whether they are in the given set.
of checked edges: N

MN < N√
N
N < N

√
N

2. For each query of size M lesser/equal than
√
N, check for all

pairs of vertices, whether there is an edge connecting them.
of checked edges: N

MM2 = NM ≤ N
√
N

I The checking step can be done (for example) with O(logN)
overhead if we use some standard set implementation.

Saba1000kg [Sabaton]

I Task: For each induced subgraph count the number of
components.

I Observation (for N = M = Q = 105): The total number of
edges among all subgraphs is at most O(N

√
N)

I Proof: Worst case if clique in each query. Note that we can’t
make clique with more than O(N) edges (by taking M as√
N). There are at most

√
N such queries.

I To build the graph we have to consider two cases:

1. For each query of size M greater than
√
N, go through all

edges and check, whether they are in the given set.
of checked edges: N

MN < N√
N
N < N

√
N

2. For each query of size M lesser/equal than
√
N, check for all

pairs of vertices, whether there is an edge connecting them.
of checked edges: N

MM2 = NM ≤ N
√
N

I The checking step can be done (for example) with O(logN)
overhead if we use some standard set implementation.

Saba1000kg [Sabaton]

I Task: For each induced subgraph count the number of
components.

I Observation (for N = M = Q = 105): The total number of
edges among all subgraphs is at most O(N

√
N)

I Proof: Worst case if clique in each query. Note that we can’t
make clique with more than O(N) edges (by taking M as√
N). There are at most

√
N such queries.

I To build the graph we have to consider two cases:

1. For each query of size M greater than
√
N, go through all

edges and check, whether they are in the given set.
of checked edges: N

MN < N√
N
N < N

√
N

2. For each query of size M lesser/equal than
√
N, check for all

pairs of vertices, whether there is an edge connecting them.
of checked edges: N

MM2 = NM ≤ N
√
N

I The checking step can be done (for example) with O(logN)
overhead if we use some standard set implementation.

Saba1000kg [Sabaton]

I Task: For each induced subgraph count the number of
components.

I Observation (for N = M = Q = 105): The total number of
edges among all subgraphs is at most O(N

√
N)

I Proof: Worst case if clique in each query. Note that we can’t
make clique with more than O(N) edges (by taking M as√
N). There are at most

√
N such queries.

I To build the graph we have to consider two cases:

1. For each query of size M greater than
√
N, go through all

edges and check, whether they are in the given set.
of checked edges: N

MN < N√
N
N < N

√
N

2. For each query of size M lesser/equal than
√
N, check for all

pairs of vertices, whether there is an edge connecting them.
of checked edges: N

MM2 = NM ≤ N
√
N

I The checking step can be done (for example) with O(logN)
overhead if we use some standard set implementation.

Saba1000kg [Sabaton]

I Task: For each induced subgraph count the number of
components.

I Observation (for N = M = Q = 105): The total number of
edges among all subgraphs is at most O(N

√
N)

I Proof: Worst case if clique in each query. Note that we can’t
make clique with more than O(N) edges (by taking M as√
N). There are at most

√
N such queries.

I To build the graph we have to consider two cases:

1. For each query of size M greater than
√
N, go through all

edges and check, whether they are in the given set.
of checked edges: N

MN < N√
N
N < N

√
N

2. For each query of size M lesser/equal than
√
N, check for all

pairs of vertices, whether there is an edge connecting them.
of checked edges: N

MM2 = NM ≤ N
√
N

I The checking step can be done (for example) with O(logN)
overhead if we use some standard set implementation.

Saba1000kg [Sabaton]

I Task: For each induced subgraph count the number of
components.

I Observation (for N = M = Q = 105): The total number of
edges among all subgraphs is at most O(N

√
N)

I Proof: Worst case if clique in each query. Note that we can’t
make clique with more than O(N) edges (by taking M as√
N). There are at most

√
N such queries.

I To build the graph we have to consider two cases:

1. For each query of size M greater than
√
N, go through all

edges and check, whether they are in the given set.
of checked edges: N

MN < N√
N
N < N

√
N

2. For each query of size M lesser/equal than
√
N, check for all

pairs of vertices, whether there is an edge connecting them.
of checked edges: N

MM2 = NM ≤ N
√
N

I The checking step can be done (for example) with O(logN)
overhead if we use some standard set implementation.

Saba1000kg [Sabaton]

I Whenever the graph is built, the number of components is
easily obtained in linear time by a couple of DFS calls.

I Complexity is O(N
√
N logN)

Saba1000kg [Sabaton]

I Whenever the graph is built, the number of components is
easily obtained in linear time by a couple of DFS calls.

I Complexity is O(N
√
N logN)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.

I There are multiple methods to find the blocks – for example:
I Combination of previously stated Data Structure and Binary

search.
I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Deep800080 [Deep Purple]

I Task: Sum the products of GCD and max for each subarray.

I Lets Divide and Conquer the array by maximum.

I This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

I Now we can proccess all subarrays and multiply them by the
maximum.

I Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

I Observation: There are at most O(logMAX) such blocks.
I There are multiple methods to find the blocks – for example:

I Combination of previously stated Data Structure and Binary
search.

I Factorisation and searching for next.

I Complexity is O(N log3MAX)

Screamers in the Storm [by Emerald Sun]

Screamers in the Storm [by Emerald Sun]

Thank you for your attention!

