CERC 2019

Presentation of solutions

December 3, 2019

ABB [ABBA]

ABB [ABBA]

» Task: Find the minimum number of letters to be appended to
make the string palindromic.

ABB [ABBA]

» Task: Find the minimum number of letters to be appended to
make the string palindromic.

» Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

ABB [ABBA]

» Task: Find the minimum number of letters to be appended to
make the string palindromic.

» Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

» We can iterate over all suffixes and check whether it is
palindromic.

» The check could be done by multiple string matching
algorithms.

» Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, ...

ABB [ABBA]

» Task: Find the minimum number of letters to be appended to
make the string palindromic.

» Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

» We can iterate over all suffixes and check whether it is
palindromic.

» The check could be done by multiple string matching
algorithms.

» Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, ...

» Complexity depends on chosen algorithm: O(N) is achievable.

Zeldain Garden [Linkin Park]

Zeldain Garden [Linkin Park]

» Task: Find the sum of divisor functions on a range.

Zeldain Garden [Linkin Park]

» Task: Find the sum of divisor functions on a range.

» Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)

Zeldain Garden [Linkin Park]

» Task: Find the sum of divisor functions on a range.

» Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)
Let Q be equal to [N]

» All numbers "lesser” than sqrt: Zlel 1Y)

All numbers "greater” than sqrt: Zgl Ed

v

v

Zeldain Garden [Linkin Park]

v

vvvyyy

Task: Find the sum of divisor functions on a range.

Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)
Let Q be equal to [N]

All numbers "lesser” than sqrt: Zlel 1Y)

All numbers "greater” than sqrt: Zgl Ed

Almost there, where is the mistake?

Zeldain Garden [Linkin Park]

v

vVvYvy yVvYy

Task: Find the sum of divisor functions on a range.

Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)
Let Q be equal to [N]

All numbers "lesser” than sqrt: Zlel 1Y)

All numbers "greater” than sqrt: Zgl Ed

Almost there, where is the mistake?

We included all pairs lesser/equal to Q twice.

Zeldain Garden [Linkin Park]

v

vVvvyVvVvyyy

Task: Find the sum of divisor functions on a range.

Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)
Let Q be equal to [N]

All numbers "lesser” than sqrt: Zlel 1Y)

All numbers "greater” than sqrt: Zgl Ed

Almost there, where is the mistake?

We included all pairs lesser/equal to Q twice.

(2- 32, (%)@

Zeldain Garden [Linkin Park]

v

vV vvyVvyVvyyvyy

Task: Find the sum of divisor functions on a range.

Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)
Let Q be equal to [N]

All numbers "lesser” than sqrt: Zlel 1Y)

All numbers "greater” than sqrt: Zgl Ed

Almost there, where is the mistake?

We included all pairs lesser/equal to Q twice.

(2 L L)@

Complexity is O(v/N)

The Bugs [The Beatles]

The Bugs [The Beatles]

» Task: Find the number of normalised 123 patterns in
sequence.

The Bugs [The Beatles]

» Task: Find the number of normalised 123 patterns in
sequence.

» There are 27 patterns which are not normalised (33).

The Bugs [The Beatles]

» Task: Find the number of normalised 123 patterns in
sequence.

» There are 27 patterns which are not normalised (33).

» BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

123: Fix the 2 and check prefix minimum and suffix
maximum.

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

123: Fix the 2 and check prefix minimum and suffix
maximum.

112: Combination of frequence array and suffix maximum.

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

123: Fix the 2 and check prefix minimum and suffix
maximum.

112: Combination of frequence array and suffix maximum.
121: Check maximum between first and last occurence of
each value.

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

123: Fix the 2 and check prefix minimum and suffix
maximum.

112: Combination of frequence array and suffix maximum.
121: Check maximum between first and last occurence of
each value.

132: Fix the 3 and do combination of prefix minimum and
biggest lesser value in suffix.

The Bugs [The Beatles]

>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

123: Fix the 2 and check prefix minimum and suffix
maximum.

112: Combination of frequence array and suffix maximum.
121: Check maximum between first and last occurence of
each value.

132: Fix the 3 and do combination of prefix minimum and
biggest lesser value in suffix.

Complexity is O(N log N)

Be Geeks [Bee Gees|

Be Geeks [Bee Gees|

» Task: Sum the products of GCD and max for each subarray.

Be Geeks [Bee Gees|

| 2

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Be Geeks [Bee Gees|

| 2

>
>

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

Be Geeks [Bee Gees|

| 2

>
>

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

Observation: There are at most O(log MAX) such blocks.

Be Geeks [Bee Gees|

| 2

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.
Observation: There are at most O(log MAX) such blocks.
There are multiple methods to find the blocks — for example:

» Combination of previously stated Data Structure and Binary
search.
» Factorisation and searching for next.

Be Geeks [Bee Gees|

| 2

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.
Observation: There are at most O(log MAX) such blocks.
There are multiple methods to find the blocks — for example:

» Combination of previously stated Data Structure and Binary
search.
» Factorisation and searching for next.

Complexity is O(N log® MAX)

K==S [Kiss]

K==S [Kiss]

» Task: Find the number of strings of length N which do not
contain any of given strings as a substring.

K==S [Kiss]

» Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N — ANS.

K==S [Kiss]

» Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N — ANS.

» We have to find out the way to build all such strings.

K==S [Kiss]

» Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N — ANS.

» We have to find out the way to build all such strings.

» This can be done by constructing the Aho-Corasick
automaton.

> It wasn't needed to construct this automaton efficiently as
there are at most Q = 100 characters involved (there will be
~ @ states in the automaton).

K==S [Kiss]

» Then we figure out approach to solve the problem, though for
much lower limit of N.

> We will use Dynamic Programming where the state
configuration is combination of length of the string and the
state of the automation that we're currently in.

» Time complexity of this approach is O(N - Q).

» Too slow to fit the constraints of the problem ---.

K==S [Kiss]

» Finally we need to optimize DP approach to fit in the time
limit.
> We will do so by using Matrix Exponentiation.

» Similarly to the DP approach we will create the transition
matrix and use its N-th power to compute the answer.

» Time complexity of this approach is O(L3log N).

Ponk Warshall [Pink Floyd]

Ponk Warshall [Pink Floyd]

» Task: Compose a reordering of a string on four letters from
fewest possible swaps.

Ponk Warshall [Pink Floyd]

» Task: Compose a reordering of a string on four letters from
fewest possible swaps.
» Reformulation:
» Directed graph on 4 vertices, edges with multiplicities.

» Decompose the graph into maximum possible number of
cycles.

Ponk Warshall [Pink Floyd]

» Task: Compose a reordering of a string on four letters from
fewest possible swaps.
» Reformulation:
» Directed graph on 4 vertices, edges with multiplicities.

» Decompose the graph into maximum possible number of
cycles.

» Greedily start with 2-cycles, then 3-cycles and cover the rest
with 4-cycles.

» Complexity is O(N).

Ponk Warshall 2-cycles

> Assume the 2-cycle is covered differently.
A C A C

T G T G

» Then we can change the covering without decreasing the
number of cycles.

Ponk Warshall 3-cycles

» After covering 2-cycles, only one case remains

Ay Mac C
Nta I Theg
T ng G (up to isomorphism)

» Only two directed 3-cycles (with one shared edge).
A C

Light Emitting Hindenburg [Led Zeppelin]

Light Emitting Hindenburg [Led Zeppelin]

» Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

Light Emitting Hindenburg [Led Zeppelin]

» Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

» Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

Light Emitting Hindenburg [Led Zeppelin]

» Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

» Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

» This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

» In case of YES: We reduce the set of numbers to those with
this bit on and OR 2/ with the answer.

» In case of NO: We simply go to another bit.

Light Emitting Hindenburg [Led Zeppelin]

» Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

» Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

» This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

» In case of YES: We reduce the set of numbers to those with
this bit on and OR 2/ with the answer.

» In case of NO: We simply go to another bit.
» Complexity is O(N log MAX)

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

> Task: Win a game of chockolate-eating against "Al".

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

> Task: Win a game of chockolate-eating against "Al".

» Observation: We can divide the game into four "independent”
games — as for each side — played at once.

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

> Task: Win a game of chockolate-eating against "Al".

» Observation: We can divide the game into four "independent”
games — as for each side — played at once.

» It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

> Task: Win a game of chockolate-eating against "Al".

» Observation: We can divide the game into four "independent”
games — as for each side — played at once.

» It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

» The winability of game can be decided by XORing the sizes of
state while.

» If the XOR is equal to 0 the state is lost.

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

> Task: Win a game of chockolate-eating against "Al".

» Observation: We can divide the game into four "independent”
games — as for each side — played at once.

» It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

» The winability of game can be decided by XORing the sizes of
state while.

» If the XOR is equal to 0 the state is lost.
» Similary we can decide the next move:

> We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

» NOTE: It can be proven that it is always possible to find such
move.

Crimson Sexy Jalapefios [Red Hot Chilli Peppers]

| 4

>

Task: Win a game of chockolate-eating against "Al".

Observation: We can divide the game into four "independent”
games — as for each side — played at once.

It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

The winability of game can be decided by XORing the sizes of
state while.

If the XOR is equal to 0 the state is lost.
Similary we can decide the next move:

We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

NOTE: It can be proven that it is always possible to find such
move.

Complexity is O(N) (as the game could consist of O(N)
moves.

Bob in Wonderlands [Alice in Chains]

Bob in Wonderlands [Alice in Chains]

» Task: Minimal number of edge reconnections to make a tree
become a path.

Bob in Wonderlands [Alice in Chains]

» Task: Minimal number of edge reconnections to make a tree
become a path.

» Lower bound: We have to get rid of all degrees larger than 2.

Bob in Wonderlands [Alice in Chains]

» Task: Minimal number of edge reconnections to make a tree
become a path.

» Lower bound: We have to get rid of all degrees larger than 2.

» Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

Bob in Wonderlands [Alice in Chains]

» Task: Minimal number of edge reconnections to make a tree
become a path.

» Lower bound: We have to get rid of all degrees larger than 2.

» Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

» Obviously we don't have to simulate the procedure!

Bob in Wonderlands [Alice in Chains]

» Task: Minimal number of edge reconnections to make a tree
become a path.

» Lower bound: We have to get rid of all degrees larger than 2.

» Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

» Obviously we don't have to simulate the procedure!

» Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

Bob in Wonderlands [Alice in Chains]

» Task: Minimal number of edge reconnections to make a tree
become a path.

» Lower bound: We have to get rid of all degrees larger than 2.

» Procedure: Disconnect every such an edge and connect it to
some leaf (it always exists).

» Obviously we don't have to simulate the procedure!

» Simply count the number of reconnections (sum of all degrees
higher than 2 minus 2).

» Complexity is O(N)

Sabal000kg [Sabaton]

Sabal000kg [Sabaton]

» Task: For each induced subgraph count the number of
components.

Sabal000kg [Sabaton]

» Task: For each induced subgraph count the number of
components.

» Observation (for N = M = Q = 10°): The total number of
edges among all subgraphs is at most O(N+v/N)

Sabal000kg [Sabaton]

» Task: For each induced subgraph count the number of
components.

» Observation (for N = M = Q = 10°): The total number of
edges among all subgraphs is at most O(N+v/N)
» Proof: Worst case if clique in each query. Note that we can't

make clique with more than O(N) edges (by taking M as
V/N). There are at most v/N such queries.

Sabal000kg [Sabaton]

» Task: For each induced subgraph count the number of
components.

» Observation (for N = M = Q = 10°): The total number of
edges among all subgraphs is at most O(N+v/N)

» Proof: Worst case if clique in each query. Note that we can't
make clique with more than O(N) edges (by taking M as
V/N). There are at most v/N such queries.

» To build the graph we have to consider two cases:

1. For each query of size M greater than v/N, go through all
edges and check, whether they are in the given set.

. N N
of checked edges: ;N < J-N < NvN

2. For each query of size M lesser/equal than v/N, check for all
pairs of vertices, whether there is an edge connecting them.
of checked edges: &M? = NM < NvVN

Sabal000kg [Sabaton]

| 2

Task: For each induced subgraph count the number of
components.

Observation (for N = M = Q = 10°): The total number of
edges among all subgraphs is at most O(N+v/N)

Proof: Worst case if clique in each query. Note that we can't
make clique with more than O(N) edges (by taking M as
V/N). There are at most v/N such queries.
To build the graph we have to consider two cases:

1. For each query of size M greater than v/N, go through all

edges and check, whether they are in the given set.

. N N
of checked edges: ;N < J-N < NvN

2. For each query of size M lesser/equal than v/N, check for all
pairs of vertices, whether there is an edge connecting them.

of checked edges: &M? = NM < NvVN

The checking step can be done (for example) with O(log N)
overhead if we use some standard set implementation.

Sabal000kg [Sabaton]

» Whenever the graph is built, the number of components is
easily obtained in linear time by a couple of DFS calls.

Sabal000kg [Sabaton]

» Whenever the graph is built, the number of components is
easily obtained in linear time by a couple of DFS calls.

> Complexity is O(Nv/N log N)

Deep800080 [Deep Purple]

Deep800080 [Deep Purple]

» Task: Sum the products of GCD and max for each subarray.

Deep800080 [Deep Purple]

» Task: Sum the products of GCD and max for each subarray.

» Lets Divide and Conquer the array by maximum.

» This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

> Now we can proccess all subarrays and multiply them by the
maximum.

Deep800080 [Deep Purple]

| 2

>
>

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

Deep800080 [Deep Purple]

| 2

>
>

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.

Observation: There are at most O(log MAX) such blocks.

Deep800080 [Deep Purple]

| 2

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.
Observation: There are at most O(log MAX) such blocks.
There are multiple methods to find the blocks — for example:

» Combination of previously stated Data Structure and Binary
search.
» Factorisation and searching for next.

Deep800080 [Deep Purple]

| 2

Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.
Observation: There are at most O(log MAX) such blocks.
There are multiple methods to find the blocks — for example:

» Combination of previously stated Data Structure and Binary
search.
» Factorisation and searching for next.

Complexity is O(N log® MAX)

Screamers in the Storm [by Emerald Sun]

Screamers in the Storm [by Emerald Sun]

Thank you for your attention!

