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» Task: Find the minimum number of letters to be appended to
make the string palindromic.

» Observation: We want to find the longest palindrome among
all suffixes of the string and append the reversed prefix to the
end of the string.

» We can iterate over all suffixes and check whether it is
palindromic.

» The check could be done by multiple string matching
algorithms.

» Examples: Hash, Z-function, Suffix Arrays, Manacher,
Palindromic Trees, ...

» Complexity depends on chosen algorithm: O(N) is achievable.
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Task: Find the sum of divisor functions on a range.

Observation: The task can be splitted into two same tasks:
Range(left,right) is equal to Range(1,right)-Range(1,left-1)
Let Q be equal to [N]

All numbers "lesser” than sqrt: Zlel 1Y)

All numbers "greater” than sqrt: Zgl Ed

Almost there, where is the mistake?

We included all pairs lesser/equal to Q twice.
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Complexity is O(v/N)
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>

Task: Find the number of normalised 123 patterns in
sequence.

There are 27 patterns which are not normalised (33).
BUT: There are only 13 of patterns after normalisation:
111,112,121,122,123,132,211,212,213,221,231,312,321
BUT: There are nonly 5 patterns which are not isomorphic
after reverse and oco-value: 111,112,121,123,132

111: Simple frequence array.

123: Fix the 2 and check prefix minimum and suffix
maximum.

112: Combination of frequence array and suffix maximum.
121: Check maximum between first and last occurence of
each value.

132: Fix the 3 and do combination of prefix minimum and
biggest lesser value in suffix.

Complexity is O(N log N)
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Task: Sum the products of GCD and max for each subarray.

Lets Divide and Conquer the array by maximum.

This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.
Observation: There are at most O(log MAX) such blocks.
There are multiple methods to find the blocks — for example:

» Combination of previously stated Data Structure and Binary
search.
» Factorisation and searching for next.

Complexity is O(N log® MAX)
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» Observation: It can also be solved by computing the number
of strings containing any of them as a substring. Then the
solution is 26N — ANS.

» We have to find out the way to build all such strings.

» This can be done by constructing the Aho-Corasick
automaton.

> It wasn't needed to construct this automaton efficiently as
there are at most Q = 100 characters involved (there will be
~ @ states in the automaton).
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» Then we figure out approach to solve the problem, though for
much lower limit of N.

> We will use Dynamic Programming where the state
configuration is combination of length of the string and the
state of the automation that we're currently in.

» Time complexity of this approach is O(N - Q).

» Too slow to fit the constraints of the problem ---.
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» Finally we need to optimize DP approach to fit in the time
limit.
> We will do so by using Matrix Exponentiation.

» Similarly to the DP approach we will create the transition
matrix and use its N-th power to compute the answer.

» Time complexity of this approach is O(L3log N).



Ponk Warshall [Pink Floyd]



Ponk Warshall [Pink Floyd]

» Task: Compose a reordering of a string on four letters from
fewest possible swaps.



Ponk Warshall [Pink Floyd]

» Task: Compose a reordering of a string on four letters from
fewest possible swaps.
» Reformulation:
» Directed graph on 4 vertices, edges with multiplicities.

» Decompose the graph into maximum possible number of
cycles.



Ponk Warshall [Pink Floyd]

» Task: Compose a reordering of a string on four letters from
fewest possible swaps.
» Reformulation:
» Directed graph on 4 vertices, edges with multiplicities.

» Decompose the graph into maximum possible number of
cycles.

» Greedily start with 2-cycles, then 3-cycles and cover the rest
with 4-cycles.

» Complexity is O(N).



Ponk Warshall 2-cycles

> Assume the 2-cycle is covered differently.
A C A C

T G T G

» Then we can change the covering without decreasing the
number of cycles.



Ponk Warshall 3-cycles

» After covering 2-cycles, only one case remains

Ay Mac C
Nta I Theg
T ng G (up to isomorphism)

» Only two directed 3-cycles (with one shared edge).
A C
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than we would get if we achieve to persist a higher bit.

» This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

» In case of YES: We reduce the set of numbers to those with
this bit on and OR 2/ with the answer.

» In case of NO: We simply go to another bit.
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» Task: Find the maximum binary AND which could be
obtained as sequence of K numbers.

» Observation: We can never get bigger answer from lesser bits
than we would get if we achieve to persist a higher bit.

» This means we can greedily iterate from most significant bits
and check, whether there are at least K of them in numbers
we have:

» In case of YES: We reduce the set of numbers to those with
this bit on and OR 2/ with the answer.

» In case of NO: We simply go to another bit.
» Complexity is O(N log MAX)
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» Observation: We can divide the game into four "independent”
games — as for each side — played at once.

» It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

» The winability of game can be decided by XORing the sizes of
state while.

» If the XOR is equal to 0 the state is lost.
» Similary we can decide the next move:

> We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

» NOTE: It can be proven that it is always possible to find such
move.
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Task: Win a game of chockolate-eating against "Al".

Observation: We can divide the game into four "independent”
games — as for each side — played at once.

It can be transformed into a NIM game with four piles (while
subtracting any number from a pile).

The winability of game can be decided by XORing the sizes of
state while.

If the XOR is equal to 0 the state is lost.
Similary we can decide the next move:

We have to take a number from a pile, such that after taking
the number, the XOR will be 0.

NOTE: It can be proven that it is always possible to find such
move.

Complexity is O(N) (as the game could consist of O(N)
moves.
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» Task: For each induced subgraph count the number of
components.

» Observation (for N = M = Q = 10°): The total number of
edges among all subgraphs is at most O(N+v/N)

» Proof: Worst case if clique in each query. Note that we can't
make clique with more than O(N) edges (by taking M as
V/N). There are at most v/N such queries.

» To build the graph we have to consider two cases:

1. For each query of size M greater than v/N, go through all
edges and check, whether they are in the given set.

. N N
# of checked edges: ;N < J-N < NvN

2. For each query of size M lesser/equal than v/N, check for all
pairs of vertices, whether there is an edge connecting them.
# of checked edges: &M? = NM < NvVN
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Task: For each induced subgraph count the number of
components.

Observation (for N = M = Q = 10°): The total number of
edges among all subgraphs is at most O(N+v/N)

Proof: Worst case if clique in each query. Note that we can't
make clique with more than O(N) edges (by taking M as
V/N). There are at most v/N such queries.
To build the graph we have to consider two cases:

1. For each query of size M greater than v/N, go through all

edges and check, whether they are in the given set.

. N N
# of checked edges: ;N < J-N < NvN

2. For each query of size M lesser/equal than v/N, check for all
pairs of vertices, whether there is an edge connecting them.

# of checked edges: &M? = NM < NvVN

The checking step can be done (for example) with O(log N)
overhead if we use some standard set implementation.
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» Whenever the graph is built, the number of components is
easily obtained in linear time by a couple of DFS calls.

> Complexity is O(Nv/N log N)
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This could be efficiently done by some data structure: For
example Segment Tree or Sparse Table.

Now we can proccess all subarrays and multiply them by the
maximum.

Now we have to find all blocks with the same GCD to left and
to right: Then we can count the answer from all combinations.
Observation: There are at most O(log MAX) such blocks.
There are multiple methods to find the blocks — for example:

» Combination of previously stated Data Structure and Binary
search.
» Factorisation and searching for next.

Complexity is O(N log® MAX)
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Thank you for your attention!



